自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 25    No. 8    August 2018

[PDF Download]    [Flash Online]

    

Effects of different numerical algorithms on simulation of chemical dissolution-front instability in fluid-saturated porous rocks
ZHAO Chong-bin(赵崇斌)1, Bruce HOBBS2, Alison ORD2

1. Computational Geosciences Research Centre, Central South University, Changsha 410083, China;
2. School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia

Abstract:Many scientific and engineering problems need to use numerical methods and algorithms to obtain computational simulation results because analytical solutions are seldom available for them. The chemical dissolution-front instability problem in fluid-saturated porous rocks is no exception. Since this kind of instability problem has both the conventional (i.e. trivial) and the unconventional (i.e. nontrivial) solutions, it is necessary to examine the effects of different numerical algorithms, which are used to solve chemical dissolution-front instability problems in fluid-saturated porous rocks. Toward this goal, two different numerical algorithms associated with the commonly-used finite element method are considered in this paper. In the first numerical algorithm, the porosity, pore-fluid pressure and acid/solute concentration are selected as basic variables, while in the second numerical algorithm, the porosity, velocity of pore-fluid flow and acid/solute concentration are selected as basic variables. The particular attention is paid to the effects of these two numerical algorithms on the computational simulation results of unstable chemical dissolution-front propagation in fluid-saturated porous rocks. The related computational simulation results have demonstrated that: 1) the first numerical algorithm associated with the porosity-pressure-concentration approach can realistically simulate the evolution processes of unstable chemical dissolution-front propagation in chemical dissolution systems. 2) The second numerical algorithm associated with the porosity-velocity-concentration approach fails to simulate the evolution processes of unstable chemical dissolution-front propagation. 3) The extra differential operation is the main source to result in the failure of the second numerical algorithm.

 

Key words: numerical algorithm; chemical dissolution; front instability; computational simulation; porous rocks

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号